16 research outputs found

    Contributions to the numerical solution of heterogeneous fluid mechanics models

    Get PDF
    A high order projection hybrid finite volume – finite element method is developed to solve incompressible and compressible low Mach number flows. Furthermore, turbulent regimes are also considered thanks to the k–ε model. The unidimensional advection-diffusion-reaction equation is used to construct, analyze and assess high order finite volume schemes. Two families of methods are studied: Kolgan-type schemes and ADER methodology. A modification of the last one is proposed providing a new numerical method called Local ADER. The designed method is extended to solve the transport-diffusion stage of the three-dimensional projection method. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the schemes and to assess the performance of the method on several realistic test problems

    A new thermodynamically compatible finite volume scheme for magnetohydrodynamics

    Full text link
    In this paper we propose a novel thermodynamically compatible finite volume scheme for the numerical solution of the equations of magnetohydrodynamics (MHD) in one and two space dimensions. As shown by Godunov in 1972, the MHD system can be written as overdetermined symmetric hyperbolic and thermodynamically compatible (SHTC) system. More precisely, the MHD equations are symmetric hyperbolic in the sense of Friedrichs and satisfy the first and second principles of thermodynamics. In a more recent work on SHTC systems, \cite{Rom1998}, the entropy density is a primary evolution variable, and total energy conservation can be shown to be a \textit{consequence} that is obtained after a judicious linear combination of all other evolution equations. The objective of this paper is to mimic the SHTC framework also on the discrete level by directly discretizing the \textit{entropy inequality}, instead of the total energy conservation law, while total energy conservation is obtained via an appropriate linear combination as a \textit{consequence} of the thermodynamically compatible discretization of all other evolution equations. As such, the proposed finite volume scheme satisfies a discrete cell entropy inequality \textit{by construction} and can be proven to be nonlinearly stable in the energy norm due to the discrete energy conservation. In multiple space dimensions the divergence-free condition of the magnetic field is taken into account via a new thermodynamically compatible generalized Lagrangian multiplier (GLM) divergence cleaning approach. The fundamental properties of the scheme proposed in this paper are mathematically rigorously proven. The new method is applied to some standard MHD benchmark problems in one and two space dimensions, obtaining good results in all cases

    A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers

    Full text link
    We present a novel staggered semi-implicit hybrid FV/FE method for the numerical solution of the shallow water equations at all Froude numbers on unstructured meshes. A semi-discretization in time of the conservative Saint-Venant equations with bottom friction terms leads to its decomposition into a first order hyperbolic subsystem containing the nonlinear convective term and a second order wave equation for the pressure. For the spatial discretization of the free surface elevation an unstructured mesh of triangular simplex elements is considered, whereas a dual grid of the edge-type is employed for the computation of the depth-averaged momentum vector. The first stage of the proposed algorithm consists in the solution of the nonlinear convective subsystem using an explicit Godunov-type FV method on the staggered grid. Next, a classical continuous FE scheme provides the free surface elevation at the vertex of the primal mesh. The semi-implicit strategy followed circumvents the contribution of the surface wave celerity to the CFL-type time step restriction making the proposed algorithm well-suited for low Froude number flows. The conservative formulation of the governing equations also allows the discretization of high Froude number flows with shock waves. As such, the new hybrid FV/FE scheme is able to deal simultaneously with both, subcritical as well as supercritical flows. Besides, the algorithm is well balanced by construction. The accuracy of the overall methodology is studied numerically and the C-property is proven theoretically and validated via numerical experiments. The solution of several Riemann problems attests the robustness of the new method to deal also with flows containing bores and discontinuities. Finally, a 3D dam break problem over a dry bottom is studied and our numerical results are successfully compared with numerical reference solutions and experimental data

    A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics

    Full text link
    We introduce a simple and general framework for the construction of thermodynamically compatible schemes for the numerical solution of overdetermined hyperbolic PDE systems that satisfy an extra conservation law. As a particular example in this paper, we consider the general Godunov-Peshkov-Romenski (GPR) model of continuum mechanics that describes the dynamics of nonlinear solids and viscous fluids in one single unified mathematical formalism. A main peculiarity of the new algorithms presented in this manuscript is that the entropy inequality is solved as a primary evolution equation instead of the usual total energy conservation law, unlike in most traditional schemes for hyperbolic PDE. Instead, total energy conservation is obtained as a mere consequence of the proposed thermodynamically compatible discretization. The approach is based on the general framework introduced in Abgrall (2018) [1]. In order to show the universality of the concept proposed in this paper, we apply our new formalism to the construction of three different numerical methods. First, we construct a thermodynamically compatible finite volume (FV) scheme on collocated Cartesian grids, where discrete thermodynamic compatibility is achieved via an edge/face-based correction that makes the numerical flux thermodynamically compatible. Second, we design a first type of high order accurate and thermodynamically compatible discontinuous Galerkin (DG) schemes that employs the same edge/face-based numerical fluxes that were already used inside the finite volume schemes. And third, we introduce a second type of thermodynamically compatible DG schemes, in which thermodynamic compatibility is achieved via an element-wise correction, instead of the edge/face-based corrections that were used within the compatible numerical fluxes of the former two methods. All methods proposed in this paper can be proven to be nonlinearly stable in the energy norm and they all satisfy a discrete entropy inequality by construction. We present numerical results obtained with the new thermodynamically compatible schemes in one and two space dimensions for a large set of benchmark problems, including inviscid and viscous fluids as well as solids. An interesting finding made in this paper is that, in numerical experiments, one can observe that for smooth isentropic flows the particular formulation of the new schemes in terms of entropy density, instead of total energy density, as primary state variable leads to approximately twice the convergence rate of high order DG schemes for the entropy density

    A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGWe introduce a simple and general framework for the construction of thermodynamically compatible schemes for the numerical solution of overdetermined hyperbolic PDE systems that satisfy an extra conservation law. As a particular example in this paper, we consider the general Godunov-Peshkov-Romenski (GPR) model of continuum mechanics that describes the dynamics of nonlinear solids and viscous fluids in one single unified mathematical formalism. A main peculiarity of the new algorithms presented in this manuscript is that the entropy inequality is solved as a primary evolution equation instead of the usual total energy conservation law, unlike in most traditional schemes for hyperbolic PDE. Instead, total energy conservation is obtained as a mere consequence of the proposed thermodynamically compatible discretization. The approach is based on the general framework introduced in Abgrall (2018) [1]. In order to show the universality of the concept proposed in this paper, we apply our new formalism to the construction of three different numerical methods. First, we construct a thermodynamically compatible finite volume (FV) scheme on collocated Cartesian grids, where discrete thermodynamic compatibility is achieved via an edge/face-based correction that makes the numerical flux thermodynamically compatible. Second, we design a first type of high order accurate and thermodynamically compatible discontinuous Galerkin (DG) schemes that employs the same edge/face-based numerical fluxes that were already used inside the finite volume schemes. And third, we introduce a second type of thermodynamically compatible DG schemes, in which thermodynamic compatibility is achieved via an element-wise correction, instead of the edge/face-based corrections that were used within the compatible numerical fluxes of the former two methods. All methods proposed in this paper can be proven to be nonlinearly stable in the energy norm and they all satisfy a discrete entropy inequality by construction. We present numerical results obtained with the new thermodynamically compatible schemes in one and two space dimensions for a large set of benchmark problems, including inviscid and viscous fluids as well as solids. An interesting finding made in this paper is that, in numerical experiments, one can observe that for smooth isentropic flows the particular formulation of the new schemes in terms of entropy density, instead of total energy density, as primary state variable leads to approximately twice the convergence rate of high order DG schemes for the entropy density.Agencia Estatal de Investigación | Ref. PID2021-122625OB-I0

    An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

    Full text link
    We present a novel second-order semi-implicit hybrid finite volume / finite element (FV/FE) scheme for the numerical solution of the incompressible and weakly compressible Navier-Stokes equations on moving unstructured meshes using an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The scheme is based on a suitable splitting of the governing PDE into subsystems and employs staggered grids, where the pressure is defined on the primal simplex mesh, while the velocity and the remaining flow quantities are defined on an edge-based staggered dual mesh. The key idea of the scheme is to discretize the nonlinear convective and viscous terms using an explicit FV scheme that employs the space-time divergence form of the governing equations on moving space-time control volumes. For the convective terms, an ALE extension of the Ducros flux on moving meshes is introduced, which is kinetic energy preserving and stable in the energy norm when adding suitable numerical dissipation terms. Finally, the pressure equation of the Navier-Stokes system is solved on the new mesh configuration using a continuous FE method, with P1\mathbb{P}_1 Lagrange elements. The ALE hybrid FV/FE method is applied to several incompressible test problems ranging from non-hydrostatic free surface flows over a rising bubble to flows over an oscillating cylinder and an oscillating ellipse. Via the simulation of a circular explosion problem on a moving mesh, we show that the scheme applied to the weakly compressible Navier-Stokes equations is able to capture weak shock waves, rarefactions and moving contact discontinuities. We show that our method is particularly efficient for the simulation of weakly compressible flows in the low Mach number limit, compared to a fully explicit ALE schem

    On thermodynamically compatible finite volume schemes for continuum mechanics

    Full text link
    In this paper we present a new family of semi-discrete and fully-discrete finite volume schemes for overdetermined, hyperbolic and thermodynamically compatible PDE systems. In the following we will denote these methods as HTC schemes. In particular, we consider the Euler equations of compressible gasdynamics, as well as the more complex Godunov-Peshkov-Romenski (GPR) model of continuum mechanics, which, at the aid of suitable relaxation source terms, is able to describe nonlinear elasto-plastic solids at large deformations as well as viscous fluids as two special cases of a more general first order hyperbolic model of continuum mechanics. The main novelty of the schemes presented in this paper lies in the fact that we solve the \textit{entropy inequality} as a primary evolution equation rather than the usual total energy conservation law. Instead, total energy conservation is achieved as a mere consequence of a thermodynamically compatible discretization of all the other equations. For this, we first construct a discrete framework for the compressible Euler equations that mimics the continuous framework of Godunov's seminal paper \textit{An interesting class of quasilinear systems} of 1961 \textit{exactly} at the discrete level. All other terms in the governing equations of the more general GPR model, including non-conservative products, are judiciously discretized in order to achieve discrete thermodynamic compatibility, with the exact conservation of total energy density as a direct consequence of all the other equations. As a result, the HTC schemes proposed in this paper are provably marginally stable in the energy norm and satisfy a discrete entropy inequality by construction. We show some computational results obtained with HTC schemes in one and two space dimensions, considering both the fluid limit as well as the solid limit of the governing partial differential equations

    A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies

    Full text link
    We present a novel hyperbolic reformulation of the Serre-Green-Naghdi (SGN) model for the description of dispersive water waves. Contrarily to the classical Boussinesq-type models, it contains only first order derivatives, thus allowing to overcome the numerical difficulties and the severe time step restrictions arising from higher order terms. The proposed model reduces to the original SGN model when an artificial sound speed tends to infinity. Moreover, it is endowed with an energy conservation law from which the energy conservation law associated with the original SGN model is retrieved when the artificial sound speed goes to infinity. The governing partial differential equations are then solved at the aid of high order ADER discontinuous Galerkin finite element schemes. The new model has been successfully validated against numerical and experimental results, for both flat and non-flat bottom. For bottom topographies with large variations, the new model proposed in this paper provides more accurate results with respect to the hyperbolic reformulation of the SGN model with the mild bottom approximation recently proposed in "C. Escalante, M. Dumbser and M.J. Castro. An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes, Journal of Computational Physics 2018"
    corecore